
From CRUD to Event Sourcing
an Investible Stock Universe

O'Reilly Software Architecture Conference March 18, 2015 #oreillysacon

Marc Siegel
Team Lead (@ms_yd)

Brian Roberts
Senior Developer / Team Lead (@flicken)

TIM Group

https://twitter.com/ms_yd
https://twitter.com/flicken

What's in it for you?

● Answer the Unanswerable
○ both now and future

Vocabulary
1. Domain-Driven Design (DDD)

○ Event
○ Command
○ Aggregate

2. Event Sourcing (ES)
○ Projection
○ Read Model

How does Event Sourcing Work?

(Image credit: Wikipedia)

How does Event Sourcing Work?
 (Quotes from Greg Young)

"State transitions are an important part of our problem
space and should be modeled within our domain"

How does Event Sourcing Work?
 (Quotes from Greg Young)

"State transitions are an important part of our problem
space and should be modeled within our domain"

"Event Sourcing says all state is transient and you only
store facts."

Vocabulary
1. Domain-Driven Design (DDD)

○ Event: something that happened in the past; a fact; a state transition
○ Command
○ Aggregate

2. Event Sourcing (ES)
○ Projection
○ Read Model

Lifecycle of a Listing (Simplified)

t
1995 2000 2005 2010 2015

IPET (Pets.com)

MSFT (Microsoft)

Q: How to represent the meaningful state
transitions of the domain as events?

FB (Facebook)

Listing Lifecycle Events

IPET (Pets.com)

TickerListed
ticker: MSFT
date: 1986

TickerListed
ticker: IPET
date: 2000

TickerDelisted
ticker: IPET
date: 2000

TickerListed
ticker: FB
date: 2012

Events:

FB (Facebook)

t
1995 2000 2005 2010 2015

MSFT (Microsoft)

Determine Current State

t
1995 2000 2005 2010 2015

IPET (Pets.com)

MSFT (Microsoft)

Q: How do we
determine the state as
of a given year? Or as
of today?

FB (Facebook)

Determine Current State

t
1995 2000 2005 2010 2015

IPET (Pets.com)

MSFT (Microsoft)

Q: How do we
determine the state as
of a given year? Or as
of today?

A: "When we talk about Event
Sourcing, current state is a
left-fold of previous behaviors"
-- Greg Young

FB (Facebook)

Current State is a Left Fold of Events
● FP: Left Fold aggregates a collection via a function and an initial value

○ Ruby: [1, 2, 3].inject(0, :+) == 6 # symbol fn name

○ Scala: List(1, 2, 3).foldLeft(0)(_ + _) == 6 // anon function

● Provide an initial state s0 and a function f : (S, E) => S

● Current State after event e3 is:
○ = leftFold([e

1
, e

2
, e

3
], s

0
, f)

○ = f(f(f(s
0
, e

1
), e

2
), e

3
)

Replay to Earlier State: 1998

t
1995 2000 2005 2010 2015

IPET (Pets.com)

MSFT (Microsoft)

State in 1998 =[] .apply(
TickerListed
ticker: MSFT
date: 1986

)

FB (Facebook)

Replay to Earlier State: 1998

t
1995 2000 2005 2010 2015

IPET (Pets.com)

MSFT (Microsoft)

MSFT
ListedState in 1998 =[]

FB (Facebook)

Replay to Earlier State: 2000

IPET (Pets.com)

MSFT
ListedState in 2000 =[] TickerListed

ticker: IPET
date: 2000

.apply()

FB (Facebook)

MSFT (Microsoft)

t
1995 2000 2005 2010 2015

Replay to Earlier State: 2000

t
1995 2000 2005 2010 2015

IPET (Pets.com)

MSFT (Microsoft)

MSFT
Listed

IPET
ListedState in 2000 =[]

FB (Facebook)

Replay to Earlier State: 2001

t
1995 2000 2005 2010 2015

IPET (Pets.com)

MSFT (Microsoft)

MSFT
Listed

IPET
ListedState in 2001 =[] TickerDelisted

ticker: IPET
date: 2000

.apply()

FB (Facebook)

Replay to Earlier State: 2001

t
1995 2000 2005 2010 2015

IPET (Pets.com)

MSFT (Microsoft)

MSFT
Listed

IPET
DelistedState in 2001 =[]

FB (Facebook)

Replay to Earlier State: 2012

t
1995 2000 2005 2010 2015

IPET (Pets.com)

MSFT (Microsoft)

FB (Facebook)

MSFT
Listed

IPET
DelistedState in 2012 =[] TickerListed

ticker: FB
date: 2012

.apply()

Replay to Earlier State: 2012

t
1995 2000 2005 2010 2015

IPET (Pets.com)

MSFT (Microsoft)

MSFT
Listed

IPET
Delisted

FB
ListedState in 2012 =[]

FB (Facebook)

Review - Only the Events are Stored

t
1995 2000 2005 2010 2015

IPET (Pets.com)

MSFT (Microsoft)

TickerListed
ticker: MSFT
date: 1986

TickerListed
ticker: IPET
date: 2000

TickerDelisted
ticker: IPET
date: 2000

TickerListed
ticker: FB
date: 2012

Events:

FB (Facebook)

Potential Benefits
● Answer the unanswerable (via history replay)
● Debugging of historical states deterministically (via history replay)
● Never Lose Information (write-only store)
● Edit the Past (via new events effective at older times)
● Optimize reads (purpose-built read models)
● Enhanced Analytics (analyze all history as it occurred)

Potential Drawbacks
● Eventual Consistency
● No built-in querying of domain models (SELECT name WHERE …)
● Risks of using a new architectural pattern
● Lack of agreement on tools and infrastructure
● Increased storage requirements

What is different from CRUD?

CRUD Micro-Service

REST API

Data Store

Controllers

ORM Model ORM Model

Background
Process

Create / Update

External
Market
Data
APIs

Client #3Client #2Client #1

Update / DeleteRead #1 Read #2

ORM Model

Event-sourced Micro-Service

Read Model #1
(files in S3)

Read Model #2
(specific database)

Write
Events

Projection #1 Projection #2

Command
Processor

Domain Models (pure) Background
Process

External
Market
Data
APIs

Client #1

Read #1

Event Store
Read
Events Read

Events

Client #2

Read #2

Client #3

Update / Delete
Commands

Create / Update
Commands

Vocabulary
1. Domain-Driven Design (DDD)

○ Event: something that happened in the past; a fact; a state transition
○ Command: a request for a state transition in the domain
○ Aggregate

2. Event Sourcing (ES)
○ Projection
○ Read Model

Aside: Domain Model is Pure?
● FP: A "pure" function doesn't cause any side effects

○ No reads or writes that modify the world
○ No altering a mutable data structure
○ Substitute f(x) for its result without changing meaning of program

● An event-sourced domain can be two pure functions
○ process(currentState, command) => e1, e2, e3
○ apply (currentState, event) => nextState

● Separates the logic of the model from interactions with any changing state
in the world

What is different from CRUD?
 (Quotes from Greg Young)

"The model that a client needs for the data in a distributed
system is screen-based and different than the domain
model."

Trade-offs
● ACID vs. Eventual Consistency

○ CRUD w/ ACID database
■ Once a row is written, subsequent reads reflect it
■ But: no help with domain-level consistency!

○ Event Sourced
■ Once event is written, subsequent reads reflect it
■ Projections eventually consistent

● Up-front costs
○ Domain modeling is hard!

CRUD Models of Market Data

(Image credit: Wikipedia)

CRUD Models of Market Data

Listing
- ticker
- exchange
- trading status
-

*

Fundamentals
- earnings per share
- market cap
- ...

primary
listing

Org
- name
- ...

Price
- date
- value
- currency

*

Universe
- name
- ...

**

other
listings

merged
with

spin-off
from

Answerable?

Q: Was AOL in Investible Universe in 1995?

Known

Equities

Active

Also:
● Market Cap > X
● Price > Y
● Avg Turnover > Z
● ...

Investible

2001 - Merger of AOL/Time Warner
Listings
 .findByTicker("AOL")
 .setTicker("TWX")
t

1995 2000 2005 2010 2015

Time Warner

Listing
ticker: AOL
trading status: Listed
....

Listing
ticker: TWX
trading status: Listed
....

Org
name: Time Warner

Org
name: America Online

Orgs
 .findByName("Time Warner")
 .mergeWith("America Online")

Orgs
 .findByName("America Online")
 .setName("AOL Time Warner)
 .addListing("TWX")

Listings
 .findByTicker("TWX")
 .setTradingStatus("Delisted")

America Online
AOL Time
Warner Time Warner

AOL

Time Warner

2001 - Merger of AOL/Time Warner
Listings
 .findByTicker("AOL")
 .setTicker("TWX")
t

1995 2000 2005 2010 2015

Listing
ticker: AOL
trading status: Listed
....

Listing
ticker: TWX
trading status: Delisted
...

Org
name: Time Warner

Org
name: AOL Time Warner

Orgs
 .findByName("Time Warner")
 .mergeWith("America Online")

Orgs
 .findByName("America Online")
 .setName("AOL Time Warner)
 .addListing("TWX")

Listings
 .findByTicker("TWX")
 .setTradingStatus("Delisted")

merged
with

America Online

Time Warner
AOL Time
Warner Time Warner

AOL

Time Warner

2003 - Name / Ticker Change
Listings
 .findByTicker("AOL")
 .setTicker("TWX")
t

1995 2000 2005 2010 2015

Listing
ticker: TWX (old)
trading status: Delisted
...

Org
name: Time Warner

Org
name: AOL Time Warner

Listing
ticker: AOL
trading status: Listed
....

Org
 .findByName("AOL Time Warner")
 .setName("Time Warner")

Listings
 .findByTicker("AOL")
 .setTicker("TWX")

merged
with

Time Warner

America Online
AOL Time
Warner Time Warner

AOL

Time Warner

2003 - Name / Ticker Change
Listings
 .findByTicker("AOL")
 .setTicker("TWX")

Listing
ticker: TWX (old)
trading status: Delisted
...

Org
name: Time Warner

Org
name: Time Warner

Listing
ticker: TWX
old ticker: AOL
trading status: Listed

Org
 .findByName("AOL Time Warner")
 .setName("Time Warner")

Listings
 .findByTicker("AOL")
 .setTicker("TWX")

merged
with

t
1995 2000 2005 2010 2015

Time Warner
AOL Time
Warner Time WarnerAmerica Online

AOL

Time Warner

2009 - AOL Spinoff

Listing
ticker: TWX (old)
trading status:
Delisted
...

Org
name: Time Warner

Org
name: Time Warner

Listing
ticker: TWX
old ticker: AOL
trading status:
Listed

merged
with

Org
 .findByName("Time Warner")
 .spinOff("AOL")
 .addListing("AOL")

Listings
 .newListing("AOL")

t
1995 2000 2005 2010 2015

Time Warner
AOL Time
Warner Time WarnerAmerica Online

AOL

Time Warner

2009 - AOL Spinoff

Listing
ticker: TWX (old)
trading status:
Delisted
...

Org
name: Time Warner

Org
name: Time Warner

Listing
ticker: TWX
old ticker: AOL
trading status:
Listed

merged
with

Org
name: AOL

Listing
ticker: AOL
trading status:
Listed
...

spin-off
from

Org
 .findByName("Time Warner")
 .spinOff("AOL")
 .addListing("AOL")

Listings
 .newListing("AOL")

t
1995 2000 2005 2010 2015

Time Warner
AOL Time
Warner Time WarnerAmerica Online

AOL

Time Warner

Answerable with CRUD Models?

Q: Was AOL in Investible Universe in 1995?

A: No and Yes
○ No current AOL org (didn't exist at time)
○ Yes former America Online (now Time Warner)

Complexity in query, requires previous states
○ Query against version columns with date ranges?
○ Query against previous versions tables?

CRUD Models - How to Update?

● Update price of TWX on 1995-01-03
○ Original: $56.22 Correct: $52.62

● Complexity in query
○ Wrong: Listings.findByTicker("TWX") // this is AOL!

○ Right: Complex historical query...
● Complexity in update

○ Org Primary Listing - any change?
○ Org Universe membership - any changes?
○ Support Two-Dimensional Time aka as-of query?

Problems

Main Problem

Unanswerable questions
● Time travel intractable
● Past not always reproducible

More Problems
● Correctness

○ Divergent interpretations of data

● Availability
○ How often can data be unavailable to clients?

● Performance
○ How fast must operations complete?

● Determinism
○ Reproducing prior states for reporting, debugging, etc.

● Auditability
○ Who changed what when and why?

Problems - Correctness
● Need a new definition of e.g. adjusted price

○ Old: unadjusted * splits * spin-offs
○ New: unadjusted * splits * spin-offs * dividends

● But...
○ Some client systems still need the old definition
○ CRUD data store didn't store the individual factors

● Common Solutions
○ Add past to relational model? Reprocess?

Problems - Availability

● How long can data be unavailable?
○ Not long - End-user client
○ Hoursto Days - Reporting

● But...
○ Most stringent of client requirements applies to all
○ Cascading failures: unavailability propagates

● Common solutions
○ bulk-heading, circuit-breakers, more servers
○ more complex than necessary?

Problems - Performance
● How fast must operations complete?

○ Writes need to keep up with input
○ Reads have varying requirements

● But..
○ Due to contention on Shared Mutable State, badly

performing Reads can impact everything else
● Common Solutions

○ Caching, sharding, more server resources
○ Trade-off with ACID consistency

Problems - Determinism
● Reproducing prior states

○ Reporting Consistently on a Past period
■ Apply adjustments only to end of the period

○ Debugging
■ Reproduce state of data in past

● But..
○ Not easy with Shared Mutable State!

● Common Solutions
○ Versioned rows, audit tables, database snapshots

Problems - Auditability
● Why did data change?

○ Attribution (source of data)
○ Security (who did it)
○ History (what and when was previous value)

● But..
○ Not easy with Shared Mutable State!

● Common Solutions
○ Versioned rows, audit tables

Event Sourced Models of Market Data

Event Sourced Listings

Listing
Aggregate

Other Reference Data...

ListingListed

ListingDelisted

ListingDeleted

Ticker ISIN

Org Name

Reference Data

ListingInitialized

ListingChanged

ListingIsinChanged

ListingTickerChanged

Listing Reference
Data Processor

Our Listing Id

Vendor Listing Id

ListingUndeleted

ListingSourceOrgIdChanged

Exch

External
Market
Data
APIs

Background
Process

Vendor Org Id

Event Sourced Orgs

Org
Aggregate

ListingListed

ListingDelisted

ListingDeleted

ListingIsinChanged

ListingRicChanged

Org Lifecycle
Data Processor

Our Org Id

Reference
DataReference Data

Org Name

Vendor Org Id

ListingUndeleted

ListingSourceOrgIdChanged

Listing
Reference
Data
Processor

(state…)

OrgListed

OrgDelisted

OrgDeleted

OrgUndeleted

OrgListingAdded

OrgListingRemoved

OrgEnteredUniverse

OrgLeftUniverse

OrgPrimaryListingChanged

Listing

1..n

prim
ary

Vocabulary
1. Domain-Driven Design (DDD)

○ Event: something that happened in the past; a fact; a state transition
○ Command: a request for a state transition in the domain
○ Aggregate: domain objects in a transactionally-consistent unit

2. Event Sourcing (ES)
○ Projection
○ Read Model

Resulting Read Models

Stock Universes - Read Model
● Generate as CSV files in S3, clients retrieve via REST API

GET /universes/1995-01-03

Org Id,Known Universe?,Active Universe?,Investible Universe?,Primary Listing Id, … Ticker

"49498",true,true,true,"0x00100b000b569402","US8873173038",..."AOL"

● Problems?
○ Correctness: Interpretation only for this use case
○ Availability: No impact on other use cases
○ Performance: No read-side calculations
○ Determinism: Can re-generate from event source data
○ Auditability: Available in event source data

● Consistency is at domain level -- entire history of universes in this case
○ Generate entire history to S3 bucket, API switches buckets atomically

Answerable via Event Sourcing?
Q: Was AOL in Investible Universe in 1995?

GET /universes/1995-01-03

Org Id,Known Universe?,Active Universe?,Investible Universe?,Primary Listing Id, …, Ticker

"49498",true,true,true,"0x00100b000b569402","US8873173038",...,"AOL"

A: Yes! former America Online (now Time Warner)

Trivial query against purpose-built Read Model

Org History - Read Model
● Build directly from indexed event stream, clients retrieve via REST API

GET /orgs?ticker=TRW
[{ eventType: "ListingListed", listing_id: "1", ticker: "AOL", processedAt: "...", effectiveAt: "...", …}

 { eventType: "OrgListed", … },

 { eventType: "ListingAdded", listing_id: "1", …}, …

 { eventType: "ListingTickerChanged", listing_id: "1", old_ticker: "AOL", ticker: "TWX" …}, ...]

● Problems?
○ Correctness: Interpretation only for this use case
○ Availability: No impact on other use cases
○ Performance: No read-side calculations
○ Determinism: Reads directly from event source data
○ Auditability: Available in event source data

● Consistency is at domain level -- entire history of single org in this case
○ Generate entire history on-the-fly directly from source (indexed!)

Vocabulary
1. Domain-Driven Design (DDD)

○ Event: something that happened in the past; a fact; a state transition
○ Command: a request for a state transition in the domain
○ Aggregate: domain objects in a transactionally-consistent unit

2. Event Sourcing (ES)
○ Projection: to derive current state from the stream of events
○ Read Model: a model of current state designed to answer a query

Read Model vs Cache
A cache is a query intermediary. It holds a previous
response until invalidated, then queries again.

A read model does not query. Applying new events to it
changes the answer it returns.

Example: count of people in room
● both may return 10 when the answer is now 11 or 9 - staleness
● cache counts the people - slow and may require locking the doors
● read model applies the entrance/exit events - like a click counter - no

impact on people nor doors

Conclusions

● Answer the "unanswerable"

● Avoid impacts on other use cases

● Keep facts that may answer future questions

Marc Siegel
 @ms_yd

Brian Roberts
@flicken

Questions?

Follow up later

https://twitter.com/ms_yd
https://twitter.com/flicken
https://twitter.com/flicken

Events vs Audit Tables or Versioned Rows

An audit table or row version column use shared mutable state as the source
of truth, and additionally store some history. Inconsistencies are hard to fix,
edits of the past are challenging, new use cases can be challenging.

An event store is an append-only list of immutable facts. What has occurred is
recorded, and can be replayed to interpret according to a future use case.

Example: count of people in room
● audit table is a logbook in the room - query may be complex, facts

may not be consistent, depends on keeping it up to date
● versioned rows is a logbook carried by each person - same issues as

audit table
● event store is "just the facts", only interpretation changes

